SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Kishalay) ;pers:(Gal Yam Avishay);pers:(Karambelkar Viraj)"

Search: WFRF:(De Kishalay) > Gal Yam Avishay > Karambelkar Viraj

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sharma, Yashvi, et al. (author)
  • A Systematic Study of Ia-CSM Supernovae from the ZTF Bright Transient Survey
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:1
  • Journal article (peer-reviewed)abstract
    • Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between -19.1 and -21, spectra having weak H ss and large Balmer ldecrements of similar to 7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3 sigma detections, with some SNe showing a reduction in the red wing of Ha, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of He I.5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of 29+(27)(21) Gpc(-3) yr(-1) for SNe Ia-CSM, which is similar to 0.02%-0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%-0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28.
  •  
2.
  • Das, Kaustav K., et al. (author)
  • Probing the Low-mass End of Core-collapse Supernovae Using a Sample of Strongly-stripped Calcium-rich Type IIb Supernovae from the Zwicky Transient Facility
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:1
  • Journal article (peer-reviewed)abstract
    • The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12 M⊙ is unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Ca ii] λλ7291, 7324/[O i] λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [O i] luminosity (≲1039 erg s−1) and derived oxygen mass (≈0.01 M⊙) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12 M⊙. The ejecta properties (Mej ≲ 1 M⊙ and Ekin ∼ 1050 erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.
  •  
3.
  • Ho, Anna Y. Q., et al. (author)
  • A Search for Extragalactic Fast Blue Optical Transients in ZTF and the Rate of AT2018cow-like Transients
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 949:2
  • Journal article (peer-reviewed)abstract
    • We present a search for extragalactic fast blue optical transients (FBOTs) during Phase I of the Zwicky Transient Facility (ZTF). We identify 38 candidates with durations above half-maximum light 1 day < t (1/2) < 12 days, of which 28 have blue (g - r less than or similar to -0.2 mag) colors at peak light. Of the 38 transients (28 FBOTs), 19 (13) can be spectroscopically classified as core-collapse supernovae (SNe): 11 (8) H- or He-rich (Type II/IIb/Ib) SNe, 6 (4) interacting (Type IIn/Ibn) SNe, and 2 (1) H&He-poor (Type Ic/Ic-BL) SNe. Two FBOTs (published previously) had predominantly featureless spectra and luminous radio emission: AT2018lug (The Koala) and AT2020xnd (The Camel). Seven (five) did not have a definitive classification: AT 2020bdh showed tentative broad H alpha in emission, and AT 2020bot showed unidentified broad features and was 10 kpc offset from the center of an early-type galaxy. Ten (eight) have no spectroscopic observations or redshift measurements. We present multiwavelength (radio, millimeter, and/or X-ray) observations for five FBOTs (three Type Ibn, one Type IIn/Ibn, one Type IIb). Additionally, we search radio-survey (VLA and ASKAP) data to set limits on the presence of radio emission for 24 of the transients. All X-ray and radio observations resulted in nondetections; we rule out AT2018cow-like X-ray and radio behavior for five FBOTs and more luminous emission (such as that seen in the Camel) for four additional FBOTs. We conclude that exotic transients similar to AT2018cow, the Koala, and the Camel represent a rare subset of FBOTs and use ZTF's SN classification experiments to measure the rate to be at most 0.1% of the local core-collapse SN rate.
  •  
4.
  • Kasliwal, Mansi M., et al. (author)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Journal article (peer-reviewed)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
5.
  • Maguire, Kate, et al. (author)
  • SN 2020udy : an SN Iax with strict limits on interaction consistent with a helium-star companion
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 1210-1228
  • Journal article (peer-reviewed)abstract
    • Early observations of transient explosions can provide vital clues to their progenitor origins. In this paper, we present the nearby Type Iax (02cx-like) supernova (SN), SN 2020udy, that was discovered within hours (∼7 h) of estimated first light. An extensive data set of ultra-violet, optical, and near-infrared observations was obtained, covering out to ∼150 d after explosion. SN 2020udy peaked at −17.86 ± 0.43 mag in the r band and evolved similarly to other ‘luminous’ SNe Iax, such as SNe 2005hk and 2012Z. Its well-sampled early light curve allows strict limits on companion interaction to be placed. Main-sequence companion stars with masses of 2 and 6 M⊙ are ruled out at all viewing angles, while a helium-star companion is allowed from a narrow range of angles (140–180° away from the companion). The spectra and light curves of SN 2020udy are in good agreement with those of the ‘N5def’ deflagration model of a near Chandrasekhar-mass carbon–oxygen white dwarf. However, as has been seen in previous studies of similar luminosity events, SN 2020udy evolves slower than the model. Broad-band linear polarization measurements taken at and after peak are consistent with no polarization, in agreement with the predictions of the companion-star configuration from the early light-curve measurements. The host galaxy environment is low metallicity and is consistent with a young stellar population. Overall, we find the most plausible explosion scenario to be the incomplete disruption of a CO white dwarf near the Chandrasekhar-mass limit, with a helium-star companion.
  •  
6.
  • Reusch, Simeon, et al. (author)
  • Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino
  • 2022
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 128:22
  • Journal article (peer-reviewed)abstract
    • The origins of the high-energy cosmic neutrino flux remain largely unknown. Recently, one high-energy neutrino was associated with a tidal disruption event (TDE). Here we present AT2019fdr, an exceptionally luminous TDE candidate, coincident with another high-energy neutrino. Our observations, including a bright dust echo and soft late-time x-ray emission, further support a TDE origin of this flare. The probability of finding two such bright events by chance is just 0.034%. We evaluate several models for neutrino production and show that AT2019fdr is capable of producing the observed high-energy neutrino, reinforcing the case for TDEs as neutrino sources.
  •  
7.
  • Sit, Tawny, et al. (author)
  • Long-rising Type II Supernovae in the Zwicky Transient Facility Census of the Local Universe
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:2
  • Journal article (peer-reviewed)abstract
    • SN 1987A was an unusual hydrogen-rich core-collapse supernova originating from a blue supergiant star. Similar blue supergiant explosions remain a small family of events, and are broadly characterized by their long rises to peak. The Zwicky Transient Facility Census of the Local Universe (CLU) experiment aims to construct a spectroscopically complete sample of transients occurring in galaxies from the CLU galaxy catalog. We identify 13 long-rising (>40 days) Type II supernovae from the volume-limited CLU experiment during a 3.5 yr period from 2018 June to 2021 December, approximately doubling the previously known number of these events. We present photometric and spectroscopic data of these 13 events, finding peak r-band absolute magnitudes ranging from −15.6 to −17.5 mag and the tentative detection of Ba ii lines in nine events. Using our CLU sample of events, we derive a long-rising Type II supernova rate of Mpc−3 yr−1, ≈1.4% of the total core-collapse supernova rate. This is the first volumetric rate of these events estimated from a large, systematic, volume-limited experiment.
  •  
8.
  • Strotjohann, Nora L., et al. (author)
  • Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:2
  • Journal article (peer-reviewed)abstract
    • Interaction-powered supernovae (SNe) explode within an optically thick circumstellar medium (CSM) that could be ejected during eruptive events. To identify and characterize such pre-explosion outbursts, we produce forced-photometry light curves for 196 interacting SNe, mostly of Type IIn, detected by the Zwicky Transient Facility between early 2018 and 2020 June. Extensive tests demonstrate that we only expect a few false detections among the 70,000 analyzed pre-explosion images after applying quality cuts and bias corrections. We detect precursor eruptions prior to 18 Type IIn SNe and prior to the Type Ibn SN 2019uo. Precursors become brighter and more frequent in the last months before the SN and month-long outbursts brighter than magnitude -13 occur prior to 25% (5-69%, 95% confidence range) of all Type IIn SNe within the final three months before the explosion. With radiative energies of up to 10(49) erg, precursors could eject similar to 1 M of material. Nevertheless, SNe with detected precursors are not significantly more luminous than other SNe IIn, and the characteristic narrow hydrogen lines in their spectra typically originate from earlier, undetected mass-loss events. The long precursor durations require ongoing energy injection, and they could, for example, be powered by interaction or by a continuum-driven wind. Instabilities during the neon- and oxygen-burning phases are predicted to launch precursors in the final years to months before the explosion; however, the brightest precursor is 100 times more energetic than anticipated.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view